Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

نویسندگان

  • Ai-Qun Yu
  • Nina Kurniasih Pratomo Juwono
  • Jee Loon Foo
  • Susanna Su Jan Leong
  • Matthew Wook Chang
چکیده

Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel

BACKGROUND Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associate...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of trans...

متن کامل

The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review

Production of fatty acid-derived biofuels and chemicals have garnered attention in recent years owing to their potential to replace petroleum and plant oil-derived products. Through the metabolic engineering of the fatty acid metabolism pathway, advanced fuels and chemicals such as free fatty acid, triacylglycerol, biodiesel, fatty alcohols, alkanes/alkene, R-3-hydroxybutyric acid, polyhydroxya...

متن کامل

13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on ...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Metabolic engineering

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2016